Министерство сельского хозяйства и продовольствия Самарской области государственное бюджетное профессиональное образовательное учреждение Самарской области «Борский государственный техникум»

Методическая разработка урока

дисциплина Математика

тема: «Числовая окружность на координатной плоскости»

специальность: 35.02.07 Механизация сельского хозяйства

Преподаватель:

Савельева А.Н.

Тема: «Числовая окружность на координатной плоскости»

Дата: 05.12.16 г.

Группа: №7 (специальность 35.02.07 Механизация сельского хозяйства)

Цели:

Образовательные:

 на основе повторения и обобщения ранее изученного материала ввести понятие числовой окружности на координатной плоскости;

- изучить основные свойства числовой окружности;

 в ходе изучения нового материала сформировать умения и навыки нахождения значений выражений.

Развивающие:

 развитие памяти, логического мышления, умения анализировать, сравнивать, обобщать, самостоятельно делать выводы;

– развитие грамотной математической речи.

Воспитательные:

- воспитывать аккуратность и точность при выполнении заданий;

- формирование культуры учебного труда;

– продолжить формирование познавательного интереса к предмету.

Задачи:

- сформировать знания об основах тригонометрии;

- закрепить пройденный материал;

 сформировать у студентов понятия необходимости применения знаний по данной теме в будущей профессии.

Тип урока: сообщение нового материала.

Методы и приемы работы: сообщение нового материала, самостоятельная работа обучающихся, беседа

Методическое обеспечение: учебник, таблица значений тригонометрических функций

Литература:

- 1. Башмаков М.И. Математика: учебник для учреждений нач. и сред. проф. образования / 8-е изд., стер. М.: Издательский центр «Академия», 2013. 256 с.
- 2. Мордкович А.Г. Алгебра и начала анализа. 10-11 классы. В 2ч. Ч. 1 учебник для общеобразовательных учреждений (базовый уровень) М. Мнемозина, 2010. Ч.2 задачник для учащихся общеобразовательных учреждений (базовый уровень) М.: Мнемозина, 2010.

План урока:

- I. Актуализация знаний 7 мин
- II. Объяснение нового материала 20 мин
- III. Закрепление изученного материала 10 мин
- IV. Подведение итогов урока, задание на самостоятельную работу студентов, рефлексия (3 мин).

Ход урока:

I. Актуализация

- 1. Организационный момент: Приветствие студентов, поверка отсутствующих
 - 2. Фронтальный опрос с целью актуализации знаний по теме:
 - 1. Дайте определение числовой окружности
- 2. Сколько четвертей имеем в единичной окружности? Как они называются?
 - 3. Вычислите длину дуги АВ.

II. Объяснение нового материала 20 мин

Открываем тетради, подписываем число, тему урока: «Числовая окружность на координатной плоскости»

У каждого из вас в тетради есть три макета числовой окружности (Приложение А). Каждая точка числовой окружности имеет в координатной плоскости свои координаты. Найдём сначала координаты тех точек координатной плоскости, которые получены на макетах числовой окружности.

На первом макете возьмем точку $M(\pi/4)$ середина I четверти. Опустим перпендикуляр MP на прямую OA и рассмотрим треугольник OMP. Так как дуга AM составляет половину дуги AB, то \angle MOP=45°. Значит,

треугольник OMP - равнобедренный прямоугольный треугольник и OP=MP, т.е. у точки M абсцисса и ордината равны: x=y. Так как координаты точки M(x;y) удовлетворяют уравнению числовой окружности $x^2+y^2=1$, то для их нахождения нужно решить систему уравнений:

$$\begin{cases} x^2 + y^2 = 1 \\ x = y \end{cases}$$

Подставив x вместо у в первое уравнение системы, получим следующее решение:

$$x^{2} + x^{2} = 1$$
, $2x^{2} = 1$ $x^{2} = \frac{1}{2}$, $x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$

При решении учитываем, что абсцисса точки М положительна.

Получили, что координаты точки M, соответствующей числу $\pi/4$ будут $M(\pi/4)=M(\sqrt{2}/2;\sqrt{2}/2)$

Аналогично можно получить координаты и других точек первого макета числовой окружности, учитывая только знаки координат в каждой четверти.

Полученные результаты запишем в таблицу (Приложение Б):

Точка окружности.									
	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π	$\frac{5 \pi}{4}$	$\frac{3 \pi}{2}$	$\frac{7 \pi}{4}$	2 π
Абсцисса $oldsymbol{x}$	1	$\frac{\sqrt{2}}{2}$	0	$-rac{\sqrt{2}}{2}$	-1	$-rac{\sqrt{2}}{2}$	0	$\frac{\sqrt{2}}{2}$	1
Ордината <i>у</i>	0	$\frac{\sqrt{2}}{2}$	1	$\frac{\sqrt{2}}{2}$	0	$-rac{\sqrt{2}}{2}$	-1	$-rac{\sqrt{2}}{2}$	0

Перейдем на второй макет. Рассуждаем аналогично для точки M, если теперь она соответствует числу $\pi/6$

Треугольник МОР прямоугольный. Так как дуга AM составляет третью часть дуги AB, то ₄МОР=30°.

Катет MP лежит против угла 30 градусов в прямоугольном треугольнике, значит, равен половине гипотенузы, т.е. ордината точки M равна

$$MP=1/2$$
 $y=1/2$

Абсциссу х точки М найдём, решив уравнение:

$$x^{2} + y^{2} = 1, x^{2} = 1 - (\frac{1}{2})^{2}, x^{2} = \frac{3}{4}, x = \frac{\sqrt{3}}{2}$$

При решении учитываем, что абсцисса точки М положительна.

Получили, что координаты точки M, соответствующей числу $\pi/6$ будут $M(\pi/6)=M(\sqrt{3}/2;1/2)$

Аналогично можно получить координаты и других точек второго макета числовой окружности, учитывая только знаки координат в каждой четверти.

На третьем макете возьмем угол в 60° или $\pi/3$. Треугольник ОКF прямоугольный. Так как дуга AK составляет третью часть дуги AB, то \angle KOF= 60° , а \angle OKF= 30° ,

Катет ОF лежит против угла 30 градусов в прямоугольном треугольнике, значит, равен половине гипотенузы, т.е. абсцисса точки F равна

$$OF=1/2$$
 $x=1/2$

Ординату у точки К найдём, решив уравнение:

$$x^{2} + y^{2} = 1, y^{2} = 1 - (\frac{1}{2})^{2}, y^{2} = \frac{3}{4}, y = \frac{\sqrt{3}}{2}$$

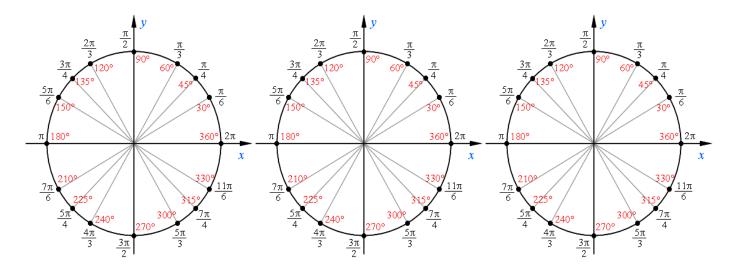
При решении учитываем, что ордината точки К положительна.

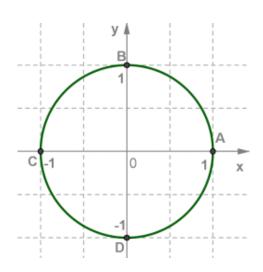
Получили, что координаты точки K, соответствующей числу $\pi/3$ будут $K(\pi/3)=F(1/2,\sqrt{3}/2)$. Полученные данные занесем в таблицу:

Точка окружности.										
	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	$\frac{7 \pi}{6}$	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	$\frac{11 \ \pi}{6}$		
Абсцисса $oldsymbol{x}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-rac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$		
Ордината <i>у</i>	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-rac{\sqrt{3}}{2}$	$-rac{\sqrt{3}}{2}$	$-\frac{1}{2}$		

III. Закрепление изученного материала 10 мин

А сейчас выполним несколько заданий с целью закрепления изученного нами материала. №29; № 33; №35


IV. Подведение итогов урока, постановка домашнего задания, рефлексия (3 мин).


Понятие числовой окружности вы изучали для того чтобы перейти к изучению таких важных с точки зрения математики и геометрии понятий как синус, косинус, тангенс и котангенс. Итак, что мы сегодня узнали на уроке нового?

Самостоятельная работа студентов: № 30, № 34, №36

Приложение А

(обязательное)

Приложение Б

(обязательное)

	Точка окружности									
	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$		
Абсцисса х										
Ордината у										

	Точка окружности									
	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π	
Абсцисса х										
Ордината у										